3.37 \(\int \cosh ^{-1}(a x)^4 \, dx\)

Optimal. Leaf size=77 \[ x \cosh ^{-1}(a x)^4-\frac{4 \sqrt{a x-1} \sqrt{a x+1} \cosh ^{-1}(a x)^3}{a}+12 x \cosh ^{-1}(a x)^2-\frac{24 \sqrt{a x-1} \sqrt{a x+1} \cosh ^{-1}(a x)}{a}+24 x \]

[Out]

24*x - (24*Sqrt[-1 + a*x]*Sqrt[1 + a*x]*ArcCosh[a*x])/a + 12*x*ArcCosh[a*x]^2 - (4*Sqrt[-1 + a*x]*Sqrt[1 + a*x
]*ArcCosh[a*x]^3)/a + x*ArcCosh[a*x]^4

________________________________________________________________________________________

Rubi [A]  time = 0.298058, antiderivative size = 77, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 6, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {5654, 5718, 8} \[ x \cosh ^{-1}(a x)^4-\frac{4 \sqrt{a x-1} \sqrt{a x+1} \cosh ^{-1}(a x)^3}{a}+12 x \cosh ^{-1}(a x)^2-\frac{24 \sqrt{a x-1} \sqrt{a x+1} \cosh ^{-1}(a x)}{a}+24 x \]

Antiderivative was successfully verified.

[In]

Int[ArcCosh[a*x]^4,x]

[Out]

24*x - (24*Sqrt[-1 + a*x]*Sqrt[1 + a*x]*ArcCosh[a*x])/a + 12*x*ArcCosh[a*x]^2 - (4*Sqrt[-1 + a*x]*Sqrt[1 + a*x
]*ArcCosh[a*x]^3)/a + x*ArcCosh[a*x]^4

Rule 5654

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcCosh[c*x])^n, x] - Dist[b*c*n, In
t[(x*(a + b*ArcCosh[c*x])^(n - 1))/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]

Rule 5718

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_
Symbol] :> Simp[((d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n)/(2*e1*e2*(p + 1)), x] - Dist[
(b*n*(-(d1*d2))^IntPart[p]*(d1 + e1*x)^FracPart[p]*(d2 + e2*x)^FracPart[p])/(2*c*(p + 1)*(1 + c*x)^FracPart[p]
*(-1 + c*x)^FracPart[p]), Int[(-1 + c^2*x^2)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c,
 d1, e1, d2, e2, p}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] && NeQ[p, -1] && IntegerQ[p + 1
/2]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \cosh ^{-1}(a x)^4 \, dx &=x \cosh ^{-1}(a x)^4-(4 a) \int \frac{x \cosh ^{-1}(a x)^3}{\sqrt{-1+a x} \sqrt{1+a x}} \, dx\\ &=-\frac{4 \sqrt{-1+a x} \sqrt{1+a x} \cosh ^{-1}(a x)^3}{a}+x \cosh ^{-1}(a x)^4+12 \int \cosh ^{-1}(a x)^2 \, dx\\ &=12 x \cosh ^{-1}(a x)^2-\frac{4 \sqrt{-1+a x} \sqrt{1+a x} \cosh ^{-1}(a x)^3}{a}+x \cosh ^{-1}(a x)^4-(24 a) \int \frac{x \cosh ^{-1}(a x)}{\sqrt{-1+a x} \sqrt{1+a x}} \, dx\\ &=-\frac{24 \sqrt{-1+a x} \sqrt{1+a x} \cosh ^{-1}(a x)}{a}+12 x \cosh ^{-1}(a x)^2-\frac{4 \sqrt{-1+a x} \sqrt{1+a x} \cosh ^{-1}(a x)^3}{a}+x \cosh ^{-1}(a x)^4+24 \int 1 \, dx\\ &=24 x-\frac{24 \sqrt{-1+a x} \sqrt{1+a x} \cosh ^{-1}(a x)}{a}+12 x \cosh ^{-1}(a x)^2-\frac{4 \sqrt{-1+a x} \sqrt{1+a x} \cosh ^{-1}(a x)^3}{a}+x \cosh ^{-1}(a x)^4\\ \end{align*}

Mathematica [A]  time = 0.0284939, size = 77, normalized size = 1. \[ x \cosh ^{-1}(a x)^4-\frac{4 \sqrt{a x-1} \sqrt{a x+1} \cosh ^{-1}(a x)^3}{a}+12 x \cosh ^{-1}(a x)^2-\frac{24 \sqrt{a x-1} \sqrt{a x+1} \cosh ^{-1}(a x)}{a}+24 x \]

Antiderivative was successfully verified.

[In]

Integrate[ArcCosh[a*x]^4,x]

[Out]

24*x - (24*Sqrt[-1 + a*x]*Sqrt[1 + a*x]*ArcCosh[a*x])/a + 12*x*ArcCosh[a*x]^2 - (4*Sqrt[-1 + a*x]*Sqrt[1 + a*x
]*ArcCosh[a*x]^3)/a + x*ArcCosh[a*x]^4

________________________________________________________________________________________

Maple [A]  time = 0.033, size = 71, normalized size = 0.9 \begin{align*}{\frac{1}{a} \left ( \left ({\rm arccosh} \left (ax\right ) \right ) ^{4}ax-4\, \left ({\rm arccosh} \left (ax\right ) \right ) ^{3}\sqrt{ax-1}\sqrt{ax+1}+12\, \left ({\rm arccosh} \left (ax\right ) \right ) ^{2}ax-24\,{\rm arccosh} \left (ax\right )\sqrt{ax-1}\sqrt{ax+1}+24\,ax \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arccosh(a*x)^4,x)

[Out]

1/a*(arccosh(a*x)^4*a*x-4*arccosh(a*x)^3*(a*x-1)^(1/2)*(a*x+1)^(1/2)+12*arccosh(a*x)^2*a*x-24*arccosh(a*x)*(a*
x-1)^(1/2)*(a*x+1)^(1/2)+24*a*x)

________________________________________________________________________________________

Maxima [A]  time = 1.15713, size = 99, normalized size = 1.29 \begin{align*} x \operatorname{arcosh}\left (a x\right )^{4} - \frac{4 \, \sqrt{a^{2} x^{2} - 1} \operatorname{arcosh}\left (a x\right )^{3}}{a} + 12 \,{\left (\frac{x \operatorname{arcosh}\left (a x\right )^{2}}{a} + \frac{2 \,{\left (x - \frac{\sqrt{a^{2} x^{2} - 1} \operatorname{arcosh}\left (a x\right )}{a}\right )}}{a}\right )} a \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccosh(a*x)^4,x, algorithm="maxima")

[Out]

x*arccosh(a*x)^4 - 4*sqrt(a^2*x^2 - 1)*arccosh(a*x)^3/a + 12*(x*arccosh(a*x)^2/a + 2*(x - sqrt(a^2*x^2 - 1)*ar
ccosh(a*x)/a)/a)*a

________________________________________________________________________________________

Fricas [A]  time = 2.31198, size = 262, normalized size = 3.4 \begin{align*} \frac{a x \log \left (a x + \sqrt{a^{2} x^{2} - 1}\right )^{4} + 12 \, a x \log \left (a x + \sqrt{a^{2} x^{2} - 1}\right )^{2} - 4 \, \sqrt{a^{2} x^{2} - 1} \log \left (a x + \sqrt{a^{2} x^{2} - 1}\right )^{3} + 24 \, a x - 24 \, \sqrt{a^{2} x^{2} - 1} \log \left (a x + \sqrt{a^{2} x^{2} - 1}\right )}{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccosh(a*x)^4,x, algorithm="fricas")

[Out]

(a*x*log(a*x + sqrt(a^2*x^2 - 1))^4 + 12*a*x*log(a*x + sqrt(a^2*x^2 - 1))^2 - 4*sqrt(a^2*x^2 - 1)*log(a*x + sq
rt(a^2*x^2 - 1))^3 + 24*a*x - 24*sqrt(a^2*x^2 - 1)*log(a*x + sqrt(a^2*x^2 - 1)))/a

________________________________________________________________________________________

Sympy [A]  time = 1.18142, size = 70, normalized size = 0.91 \begin{align*} \begin{cases} x \operatorname{acosh}^{4}{\left (a x \right )} + 12 x \operatorname{acosh}^{2}{\left (a x \right )} + 24 x - \frac{4 \sqrt{a^{2} x^{2} - 1} \operatorname{acosh}^{3}{\left (a x \right )}}{a} - \frac{24 \sqrt{a^{2} x^{2} - 1} \operatorname{acosh}{\left (a x \right )}}{a} & \text{for}\: a \neq 0 \\\frac{\pi ^{4} x}{16} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(acosh(a*x)**4,x)

[Out]

Piecewise((x*acosh(a*x)**4 + 12*x*acosh(a*x)**2 + 24*x - 4*sqrt(a**2*x**2 - 1)*acosh(a*x)**3/a - 24*sqrt(a**2*
x**2 - 1)*acosh(a*x)/a, Ne(a, 0)), (pi**4*x/16, True))

________________________________________________________________________________________

Giac [A]  time = 1.46721, size = 169, normalized size = 2.19 \begin{align*} x \log \left (a x + \sqrt{a^{2} x^{2} - 1}\right )^{4} - 4 \,{\left (\frac{\sqrt{a^{2} x^{2} - 1} \log \left (a x + \sqrt{a^{2} x^{2} - 1}\right )^{3}}{a^{2}} - \frac{3 \,{\left (x \log \left (a x + \sqrt{a^{2} x^{2} - 1}\right )^{2} + 2 \, a{\left (\frac{x}{a} - \frac{\sqrt{a^{2} x^{2} - 1} \log \left (a x + \sqrt{a^{2} x^{2} - 1}\right )}{a^{2}}\right )}\right )}}{a}\right )} a \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arccosh(a*x)^4,x, algorithm="giac")

[Out]

x*log(a*x + sqrt(a^2*x^2 - 1))^4 - 4*(sqrt(a^2*x^2 - 1)*log(a*x + sqrt(a^2*x^2 - 1))^3/a^2 - 3*(x*log(a*x + sq
rt(a^2*x^2 - 1))^2 + 2*a*(x/a - sqrt(a^2*x^2 - 1)*log(a*x + sqrt(a^2*x^2 - 1))/a^2))/a)*a